HomeIsabela State University Linker The Journal of Emerging Research in Agriculture, Fisheries and Forestryvol. 5 no. 2 (2025)

Effect of Microbial Ratio, Storage Temperature, and Packaging on the Viability and Stability of Co-Inoculated Rhizobium tropici and Azospirillum spp.in Nitrogen-Fixing Biofertilizer

Sarah B. Aquino | Larjan Kent M. Cuevas | Fevie Rica A. Ancheta | Gerly T. Zulueta | Kay S. Olivas | Rose Mary G. Aquino

Discipline: agricultural sciences

 

Abstract:

Access to reliable microbial biofertilizers in the Philippines remains limited, underscoring the need for locally produced, stable, and farmer-ready alternatives. This study evaluated the 12-month viability patterns of a solid co-inoculated biofertilizer containing Rhizobium tropici (isolated from Saccharum spontaneum) and Azospirillum spp. formulated at five microbial ratios and stored under different packaging and temperature conditions. The research employed a descriptive experimental approach to document colonyforming unit (CFU/g) trajectories, identify stability trends, and determine whether each formulation maintained viability above the regulatory threshold of ≥1 × 10? CFU/g. Solid formulations were packaged in polyethylene (PPE) or aluminum foil and stored under ambient (28–32 °C) or airconditioned (20–25 °C) conditions. Monthly viability was assessed using serial dilution and spread plating on Dobereiner’s medium. Results showed a general pattern of early stabilization (Months 1–3) followed by gradual CFU decline. The balanced 50:50 mixture (1:1 co-culture) exhibited the highest stability, particularly when stored in aluminum foil at 20–25 °C, maintaining 2.6 × 10? CFU/g at Month 12. Azospirillum spp.-dominant mixtures showed strong resilience, while R. tropicidominant and single-strain formulations declined more rapidly. Packaging and temperature were major determinants of shelf-life performance, with aluminum foil and cool storage markedly improving microbial survival. The descriptive study provides foundational stability data essential for local product development and quality assurance. Future research should validate agronomic performance through field trials and explore alternative carrier systems and cost-efficient storage strategies to further optimize biofertilizer formulations.



References:

  1. Al-Tawaha, A.R., Saranraj, P., Sivasakthivelan, P., Amala, K., Imran, Amanullah, Al Tawaha, A. R., Thangadurai, D., Sangeetha, J., Rauf, A., Khalid, S., Alsultan, W., & Alwedyan, M. (2021). Adaptation of Azospirillum to stress conditions: A review. Advances in Environmental Biology, 15(4), 1–5. https://doi.org/10.22587/aeb.2021.15.4.1  
  2. Aloo, B. N., Mbega, E. R., Makumba, B. A., & Tumuhairwe, J. B. (2022). Effects of carrier materials and storage temperatures on the viability and stability of three biofertilizer inoculants obtained from potato (Solanum tuberosum L.) rhizosphere. Agriculture, 12(2), Article 140. https://doi.org/10.3390/agriculture12020140
  3. Bahuguna, V., Matura, R., Farswan, A. S., Naqvi, S. S., Sharma, N., & Chaudhary, M. (2025). Rhizobium as a potential biofertilizer and its quality control analysis for sustainable agriculture. Journal of Applied Biology and Biotechnology. https://doi.org/10.7324/jabb.2025.197428
  4. Cassán, F., Coniglio, A., López, G., Molina, R., Nievas, S., de Carlan, C. L. N., Donadio, F., Torres, D., Rosas, S., Pedrosa, F. O., de Souza, E., Zorita, M. D., de-Bashan, L., & Mora, V. (2020). Everything you must know about Azospirillum spp. and its impact on agriculture and beyond. Biology and Fertility of Soils, 56(4), 461–479. https://doi.org/10.1007/s00374-020-01463-y
  5. Consiglio, A. N., Rubinsky, B., & Powell-Palm, M. J. (2022). Relating metabolism suppression and nucleation probability during supercooled biopreservation. Journal of Biomechanical Engineering, 144(7). https://doi.org/10.1115/1.4054217
  6. Elita, N., Erlinda, R., Yefriwati, Y., Rinda, Y., Sari, D. A., Ayu, K. I., Maulina, F., & Hasan, N. A. (2025). Microbial population and nutrient content of a biofertilizer containing Azotobacter sp. and Pseudomonas fluorescens with different carrier materials after storage. Journal of Applied Agricultural Science and Technology, 9(1), 11–22. https://doi.org/10.55043/jaast.v9i1.365
  7. Garcia, M. V. C., Nogueira, M. A., & Hungria, M. (2021). Combining microorganisms in inoculants is agronomically important but industrially challenging: Case study of a composite inoculant containing Bradyrhizobium and Azospirillum spp. for the soybean crop. AMB Express, 11(1). https://doi.org/10.1186/s13568-021-01230-8
  8. Ge, C., Verma, S. S., Burruto, J., Ribalco, N., Ong, J., & Sudhahar, K. (2020). Effects of flexing, optical density, and lamination on barrier and mechanical properties of metallized films and aluminum foil-centered laminates prepared with polyethylene terephthalate and linear low-density polyethylene. Journal of Plastic Film & Sheeting, 37(2), 205–225. https://doi.org/10.1177/8756087920963532
  9. Greffe, V. R. G., & Michiels, J. (2020). Desiccation-induced cell damage in bacteria and the relevance for inoculant production. Applied Microbiology and Biotechnology, 104(9), 3757–3770. https://doi.org/10.1007/s00253-020-10501-6
  10. Gureeva, M. V., & Gureev, A. P. (2023). Molecular mechanisms determining the role of bacteria from the genus Azospirillum in plant adaptation to damaging environmental factors. International Journal of Molecular Sciences, 24(11), Article 9122. https://doi.org/10.3390/ijms24119122
  11. Hindersah, R., Rahmadina, I., Harryanto, R., Suryatmana, P., & Arifin, M. (2021). Bacillus and Azotobacter counts in solid biofertilizer with different concentration of zeolite and liquid inoculant. IOP Conference Series: Earth and Environmental Science, 667(1), Article 012010. https://doi.org/10.1088/1755-1315/667/1/012010
  12. Indratmi, D., Iriany, A., Ikhwan, A., & Hafsah, R. (2021). Storability and viability of biofertilizer in various formulas of carrier and packaging. International Journal of Agriculture and Environmental Research, 7(5), 780–790. https://doi.org/10.51193/ijaer.2021.7502
  13. Liu, X., Mei, S., & Salles, J. F. (2023). Do inoculated microbial consortia perform better than single strains in living soil? A meta-analysis. bioRxiv. https://doi.org/10.1101/2023.03.17.533112
  14. Macarena Fernández, P., Pagnussat, L. A., Borrajo, M. P., Jose, J., Francois, N. J., & Creus, C. M. (2022). Chitosan/starch beads as bioinoculant carriers: Long-term survival of bacteria and plant growth promotion. Applied Microbiology and Biotechnology, 106(23), 7963–7972. https://doi.org/10.1007/s00253-022-12220-6
  15. Machado, D., Maistrenko, O. M., Andrejev, S., Kim, Y., Bork, P., & Patil, K. R. (2021). Polarization of microbial communities between competitive and cooperative metabolism. Nature Ecology & Evolution, 5(2), 195–203. https://doi.org/10.1038/s41559-020-01353-4
  16. Maximiano, M. R., Megías, E., Santos, I. R., Santos, L. S., Ollero, F. J., Megías, M., Franco, O. L., & Mehta, A. (2020). Proteome responses of Rhizobium tropici CIAT 899 upon apigenin and salt stress induction. Applied Soil Ecology, 159, Article 103815. https://doi.org/10.1016/j.apsoil.2020.103815
  17. Mateus, M.P., Gomes, V., Muraoka, C. Y., Bruna, F., Souchie, E. L., Braccini, A. L., Lazarini, E., Marino, I., Cato, S. C., & Tezotto, T. (2022). Combination of Azospirillum spp. and Bradyrhizobium on inoculant formulation improves nitrogen biological fixation in soybean. Journal of Agricultural Science, 14(4), 145. https://doi.org/10.5539/jas.v14n4p145
  18. Mickael, N., Teixeira, I. R., Carneiro, G., Rocha, E. C., Peixoto, E., Caldeira, L., Fernandes Damião, E., & Sbroggio, M. (2025). Physiological quality of bean seeds cultivated with rhizobia reinoculation and Azospirillum co-inoculation at different growth stages. Microorganisms, 13(4), Article 805. https://doi.org/10.3390/microorganisms13040805
  19. Nguyen, H.-L., Tran, T. H., Hao, L. T., Jeon, H., Koo, J. M., Shin, G., Hwang, D. S., Hwang, S. Y., Park, J., & Oh, D. X. (2021). Biorenewable, transparent, and oxygen/moisture barrier nanocellulose/nanochitin-based coating on polypropylene for food packaging applications. Carbohydrate Polymers, 271, Article 118421. https://doi.org/10.1016/j.carbpol.2021.118421
  20. Nievas, S., Coniglio, A., Takahashi, W. Y., López, G. A., Larama, G., Torres, D. I., Rosas, S. M., Mazer Etto, R., Galvão, C. W., Mora, V. C., & Cassán, F. (2023). Unraveling Azospirillum spp.’s colonization ability through microbiological and molecular evidence. Journal of Applied Microbiology, 134(4). https://doi.org/10.1093/jambio/lxad071
  21. Pandey, V. C., & Singh, D. P. (2020). Saccharum spp.: Potential role in ecorestoration and biomass production. In Phytoremediation potential of perennial grasses (pp. 211–226). Elsevier. https://doi.org/10.1016/B978-0-12-817732-7.00010-9
  22. Patil, C., Patil, S. S., & Sriramareddy, P. (2025). Development of optimized liquid formulations of Azospirillum spp., phosphate-solubilizing bacteria, and Rhizobium strains for enhanced viability and shelf life. Asian Journal of Biotechnology and Bioresource Technology, 11(1), 1–13. https://doi.org/10.9734/ajb2t/2025/v11i1228
  23. Peña, K. D. (2024, November). Bio-N: Cheaper PH-made fertilizer in chains. INQUIRER.net. https://newsinfo.inquirer.net/2010312/bio-n-cheaper-ph-made-fertilizer-in-chains
  24. Pedraza, R. O., Filippone, M. P., Fontana, C., Salazar, S. M., Ramírez-Mata, A., Sierra-Cacho, D., & Baca, B. E. (2020). Azospirillum spp. In Beneficial microbes in agro-ecology (pp. 73–105). https://doi.org/10.1016/B978-0-12-823414-3.00006-X
  25. Priyanka, N., Kumar, S., & Sharma, S. (2024). Development of bacterial bioformulations using response surface methodology. Journal of Applied Microbiology, 135(11). https://doi.org/10.1093/jambio/lxae263
  26. Republic of the Philippines Department of Agriculture Fertilizer and Pesticide Authority. (n.d.). Fertilizer product listing. Retrieved September 9, 2025, from https://fpa.da.gov.ph/wp-content/uploads/2025/03/FOR-POSTING_FERTILIZER_PRODUCT_LISTING_AS_OF_FEBRUARY-28-2025_rev-mbd.pdf
  27. Rizvi, A., Ahmed, B., Khan, M. S., Umar, S., & Lee, J. (2021). Psychrophilic bacterial phosphate-biofertilizers: A novel extremophile for sustainable crop production under cold environment. Microorganisms, 9(12), 2451. https://doi.org/10.3390/microorganisms9122451
  28. Saputro, F. A., & Kurniawati, H. (2024). The application of biofertilizer to realize sustainable agricultural program: A review. ISST, 3, 133–142. https://doi.org/10.33830/isst.v3i1.2317
  29. Shamim, A., Mahfooz, S., Hussain, A., & Farooqui, A. (2020). Ability of Al-acclimatized immobilized Nostoc muscorum to combat abiotic stress and its potential as a biofertilizer. Journal of Pure and Applied Microbiology, 14(2), 1377– https://doi.org/10.22207/jpam.14.2.35
  30. Somero, G. N. (2020). The cellular stress response and temperature: Function, regulation, and evolution. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 333(6), 379–397. https://doi.org/10.1002/jez.2344
  31. Thomloudi, E.-E., Tsalgatidou, P. C., Douka, D., Spantidos, T.-N., Dimou, M., Venieraki, A., & Katinakis, P. (2019). Multistrain versus single-strain plant growth promoting microbial inoculants—The compatibility issue. Hellenic Plant Protection Journal, 12(2), 61–77. https://doi.org/10.2478/hppj-2019-0007.
  32. Zhang, Y., Ku, Y.-S., Cheung, T.-Y., Cheng, S.-S., Xin, D., Gombeau, K., Cai, Y., Lam, H.-M., & Chan, T.-F. (2024). Challenges to rhizobial adaptability in a changing climate: Genetic engineering solutions for stress tolerance. Microbiological Research, 288, Article 127886. https://doi.org/10.1016/j.micres.2024.127886