HomeInternational Journal of Academic and Practical Researchvol. 2 no. 1 (2023)

Yield Response and Nutritional Value of White Oyster Mushroom (Pleurotus pulmonarius) in Different Mixing Ratios of Hardwood Sawdust

Roi Vincent R. Rivera | Gladys M. Manalo | John Paulo R. Villanueva | Johnmike A. Chaneco | Evelyn Q. Alera

 

Abstract:

This study investigated the effects of the different mixing ratios of acacia and mango hardwood sawdust on the growth, yield, and nutritional content of the white oyster mushroom (Pleurotus pulmonarius). Six treatments were utilized: Farmers’ Practice (T1), 100% Mango Sawdust (T2), 100%AcaciaSawdust (T3), 50% Mango Sawdust: 50% Acacia Sawdust (T4), 75%MangoSawdust: 25% Acacia Sawdust (T5) 75% Acacia Sawdust: 25%Mango Sawdust (T6). Each treatment was replicated four times and arranged in a complete randomized design (CRD). The collected data were reported from three flushes and presented in means plus the standard error mean. Mycelial running completion was found to be statistically similar among treatments and comparable with the rice straw substrate (control). The combination of acacia and mango sawdust (T4, T6) provided the shortest number of days for the first formation of fruiting bodies. The number of fruiting bodies in the mango and acacia sawdust treatments was statistically comparable to the control. The 100% mango sawdust provided significant mushroom yield in the different flushes. Mixed sawdust treatments (T4, T5, and T6) were observed to have significantly higher crude protein, crude fiber, and ash content, indicative of their potential as food and feed sources. Overall, the findings of this study revealed the potential of hardwood sawdust in different mixing ratios to be an alternative to rice straw when it comes to growing white oyster mushrooms. It should be noted, nevertheless, that further investigations are recommended to better establish and validate the present findings.



References:

  1. Akinfemi, A. & Ogunwole, OA. (2012). Chemical Composition and In Vitro Digestibility of Rice Straw Treated with Pleurotus ostreatus, Pleurotus pulmonarius and Pleurotus tuber-regiumSlovak J. Anim. Sci., 45(1): 14-20.
  2. Alvarez, L.V. & Bautista, A.B. (2021). Growth and yield performance of Pleurotus on selected Lignocellulosic wastes in the vicinity of PUP main campus, Philippines. Indian Journal of Science and Technology 14(3): 259-269. https://doi.org/ 10.17485/IJST/v14i3.389
  3. Banik, S. & Nandi, R. (2004). Effect of supplementation of rice straw with biogas residual slurry manure on the yield, protein and mineral contents of oyster mushroom. Ind Crops Prod Vol (20), 311–319https://doi.org/10.1016/j.indcrop.2003.11.003
  4. Baysal E, Peker H, Yalinkilic MK, & Temiz A. (2003). Cultivation of oyster mushroom on waste paper with some added supplementary material. Biores Technol 89:95–97https://doi.org/10.1016/S0960-8524(03)00028-2
  5. Bhattacharjya, DK., Paul,RK., Miah, MN. & Ahmed, KA. (2014). Effect of Different Saw Dust Substrates on the Growth and Yield of Oyster Mushroom (Pleurotus ostreatus). IOSR Journal of Agriculture and Veterinary Science 7(2), 38-46.
  6. Bugg, T. D. H., Ahmad, M., Hardiman, E. M., & Rahmanpour, R. (2011). Pathways for degradation of lignin in bacteria and fungi. Natural Product Reports, 28(12), 1883. https://doi.org.10.1039/c1np00042j
  7. Chang, S.T., & Miles, P.G. (2004). Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact. CRC Press, Boca Raton, Fla, USA, 2nd edition. https://doi.org/10.1201/9780203492086
  8. Chang, H.Y., Jeon, S.W., Cosadio A.L., Icalina, L., Panganiban, R., Quirino, R.A., & Song, Y. (2014).  Status and Prospect of Mushroom Industry in the Philippines. JPAIR Multidisciplinary Research Journalvol. 16 no. 1https://ejournals.ph/article.php?id=12367
  9. Chen, F., Xiong, S., Sundelin, J., Martín, C., & Hultberg, M. (2020). Potential for combined production of food and biofuel: Cultivation of Pleurotus pulmonarius on soft- and hardwood sawdusts. Journal of Cleaner Production, 266, 122011. https://doi.org/10.1016/j.jclepro.2020.122011
  10. Correa R., Brugnari T., Bracht A., Peralta RM., & Ferreira I. (2016).  Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (Oyster mushroom) related with its chemical composition: A review on the past decade findings.  Trends in Food Science & Technology Volume 50, Pages 103-117. https://doi.org/10.1016/j.tifs.2016.01.012
  11. Deepalakshmi K., & Mirunalini S. (2014). Pleurotus ostreatus: an oyster mushroom with nutritional and medicinal properties. J Biochem Technol 5:718–726. https://jbiochemtech.com
  12. Islam, MZ, Rahman, MH, & Hafiz F. (2009). Cultivation of oyster mushroom (Pleurotus flabellatus) on different substrates. Int J Sustain Crop Prod. 4(1): 45–48.
  13. Jeewanthi, LAMN., Ratnayake, K. & Rajapakse, P. (2017). Growth and yield of Reishi mushroom [Ganoderma lucidum (Curtis) P. Karst] in different sawdust substrates. Journal of Food and Agriculture 10(1&2): 8-16. I: http://doi.org/10.4038/jfa.v10i1-2.5208
  14. Jeznabadi, E.K., Jafarpour, M. & Eghbalsaied, S. (2016). King oyster mushroom production using various sources of agricultural wastes in Iran. Int J Recycl Org Waste Agricult 1-8. https://doi.org/10.1007/s40093-015-0113-3
  15. Jiang M, Zhao MM, Zhou ZW, Huang T, Chen XL, & Wang Y. (2011) Isolation of cellulose with ionic liquid from steam exploded rice straw. Industrial Crops and Products 33(3):734-738. https://doi.org/10.1016/j.indcrop.2011.01.015
  16. Khan, NAK., Ajmal, M., Ul Haq, MI., Javed, N. Asif Ali, M., Binyamin, R. & Khan, SA. (2012). Impact of Sawdust Using Various Woods for Effective Cultivation of Oyster Mushroom. Pak. J. Bot. 44(1): 399-402http://www.pakbs.org/pjbot/PDFs/44(1)/61.pdf
  17. Ko, H. G., Park, H. G., Park, S. H., Choi, C. W., Kim, S. H., & Park, W. M. (2005). Comparative study of mycelial growth and basidiomata formation in seven different species of the edible mushroom genus Hericium. Bioresource Technology, 96(13), 1439–1444. https://doi.org/10.1016/j.biortech.2004.12.009
  18. Mondal, S., Rehana, J., Noman, M., & Adhikary, S. (2010). Comparative study on growth and yield performance of oyster mushroom Pleurotus florida on different substrates. Journal of the Bangladesh Agricultural University, 8(2), 213–220. https://doi.org/10.3329/jbau.v8i2.7928
  19. Naraian, R., Sahu, R. K., Kumar, S., Garg, S. K., Singh, C. S., & Kanaujia, R. S. (2008). Influence of different nitrogen-rich supplements during cultivation of Pleurotus florida on corn cob substrate. The Environmentalist, 29(1), 1–7. https://doi.org/10.1007/s10669-008-9174-4
  20. Onyeka, EU., Udeogu, E., Emelo, C. & Okehie, MA. (2018). Effect of substrate media on growth and nutritional composition of domestically grown oyster mushroom Pleurotus ostreatus). African Journal of Plant Science 12(7): 141-147. https://doi.org.10.5897/AJPS2016.1445
  21. Otunla, CA. & Idowu, OO. (2012). Comparative Study of the Growth and Yield of Pleurotus ostreatus (Oyster Mushroom) on Some Tropical Trees. Food 6(1), 86-89http://www.globalsciencebooks.info/Online/GSBOnline/images/2012/FOOD_6(1)/FOOD_6(1)86-89o.pdf
  22. Oyetayo, V. O., Ogidi, C. O., Bayode, S. O., & Enikanselu, F. F. (2021). Evaluation of biological efficiency, nutrient contents and antioxidant activity of Pleurotus pulmonarius enriched with Zinc and Iron. Indian Phytopathology.
  23. Pathmashini, L., Arulnandhy, V., & Wijeratman, W. (2009). Cultivation of       Oyster Mushroom (Pleurotus ostreatus) on Sawdust. Ceylon Journal of Science (Biological Sciences) 37(2).  https://doi.org/10.4038/cjsbs.v37i2.505
  24. Philippoussis, A., Zervakis, G., & Diamantopoulou (2001). Bioconversion of agricultural lignocellulosic wastes through the cultivation of the edible mushrooms Agrocybe aegerita, Volvariell volvacea and Pleurotus spp. World Journal of Microbiology 17: 191-200
  25. Pinto, PC., Evtuguin, DV. & Neto, CP. (2005). Chemical Composition and Structural Features of the Macromolecular Components of Plantation Acacia mangium Wood. J. Agric. Food Chem. 53, 7856-7862. https://doi.org.10.1021/jf058081b
  26. Preethy, S. & Anbuselvi, A. (2021). Variables Influencing the Growth of Golden Oyster Mushroom. Nat. Volatiles & Essent. Oils 8(4): 3576-3586https://www.nveo.org/index.php/journal/article/view/851
  27. Rajarathnam, S., Bano, Z., & Miles, P.G. (2009). Pleurotus mushrooms. Part I A. morphology, life cycle, taxonomy, breeding, and cultivation. Critical Reviews in Food Science and Nutrition, 15-223https://doi.org/10.1080/10408398709527465
  28. Raman, J., Jang, KY., Oh, YL., Oh, M., Im, JH., Lakshmanan, H. & Sabaratnam, V. (2021). Cultivation and Nutritional Value of Prominent Pleurotus spp.: An Overview. Mycobiology, 49:1, 1-14https://doi.org/10.1080/12298093.2020.1835142
  29. Rambey R., Sitepu, I.D.B., & Siregar E.B.M. (2019). Productivity of oyster mushrooms (Pleurotus ostreatus) on media corncobs mixed with sawdust. IOP Conference Series: Earth and Environmental ScienceVolume 260https://iopscience.iop.org/article/10.1088/1755-1315/260/1/012076/meta
  30. Rowell, R., Pettersen, R., & Tshabalala, MA. (2012). Cell Wall Chemistry in Handbook of Wood Chemistry and Wood Composites. CRC Press. https://www.routledgehandbooks.com/doi/10.1201/b12487-5
  31. Sanchez, C., 2009. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol. Adv. 27 (2), 185e194. https://doi.org/10.1016/j.biotechadv.2008.11.001
  32. Sharma, A. & Mohanty, B. (2021). Thermal degradation of mango (Mangifera indica) wood sawdust in a nitrogen environment: characterization, kinetics, reaction mechanism, and thermodynamic analysis. RSC Adv. 11, 13396. https://doi.org.10.1039/d1ra01467f
  33. Sharma S, Yadav PR, & Pokhrel PC. (2013). Growth and yield of oyster Mushroom (Pleurotus ostreatus) on different substrates. J New Biol Rep 2:3–8. https://www.academia.edu/28145552
  34. Timbreza, JD. & Arcelona, AN. (2004). Utilization of sawdust as substrate for oyster mushroom (Pleurotus sp. L.) production. NVSU Research Journal.
  35. Yao, S., Wu, G., Xing, M., Zhou, S., and Pu, J. (2010). Determination of lignin content in Acacia species using near-infrared reflectance spectroscopy. BioResources 5(2), 446-562.