HomeJournal of Interdisciplinary Perspectivesvol. 2 no. 10 (2024)

Antimicrobial Activity of Coffea liberica (Liberian Coffee) in Different Roasting Intensities and Varying Extract Concentrations against Staphylococcus aureus and Escherichia coli

Rodmie Oliver E. Pumaras | Daniela D. Badong | Antoinette Mikaela S. Cruz | Karmela G. Coros | Maia Viktoria V. Infiesto | Jewel Joyce H. Mojica | Jullien Yvin B. Paulino

Discipline: natural sciences (non-specific)

 

Abstract:

Much prior research has shown that coffee, particularly its polyphenolic compounds like caffeine, chlorogenic acid, and melanoidins, exhibits antimicrobial properties against various pathogens. Building on this foundation, this study aimed to determine the antimicrobial activity of Coffea liberica (Liberian Coffee) with a focus on varying roasting intensities and concentrations. Specifically, it investigated the effects of different roasting intensities and extract concentrations against Staphylococcus aureus and Escherichia coli. Coffea liberica contains polyphenols such as caffeine, chlorogenic acid, and melanoidins, known for their antimicrobial properties. The coffee beans were obtained from Amadeo Artisano Coffee Farm and roasted to light and dark intensities. Aqueous extracts were prepared at concentrations of 25%, 50%, 75%, and 100% for each roast intensity using distilled water as the solvent. Cefepime served as a positive control, and distilled water as a negative control. The disc diffusion method on Mueller-Hinton agar plates was used to evaluate the extracts' antimicrobial activity. Results showed that Coffea liberica extracts exhibited no significant antimicrobial activity against Staphylococcus aureus or Escherichia coli across all roasting intensities and concentrations, with inhibition zones equivalent to the negative control. Descriptive statistical analysis confirmed no significant interaction between roasting intensity, extract concentration, and antimicrobial activity. The findings suggest the need for further research using alternative extraction methods, higher concentrations, or different bacteria to fully understand Coffea liberica's potential as a natural antimicrobial agent.



References:

  1. Adzitey, F., Agbolosu, A., & Udoka, U. (2019). Antibacterial effect of aloe vera gel extract on escherichia coli and salmonella enterica isolated from the gastrointestinal tract of guinea fowls.. Journal of World S Poultry Research, 9(3), 166-173. https://doi.org/10.36380/scil.2019.wvj21
  2. Afroz, J., Islam, S., & Rahman, M. (2020). Determination of antimicrobial activity of tea (Camellia sinensis) and coffee (Coffea arabica) extracts on common human pathogenic bacteria. Academia Journal of Medicinal Plants, 8(2), 17-22. https://doi.org/10.15413/ajmp.2020.0102
  3. Alnsour, L., Issa, R., Awwad, S., Albals, D., & Al-Momani, I. (2022). Quantification of total phenols and antioxidants in coffee samples of different origins and evaluation of the effect of degree of roasting on their levels. Molecules, 27(5), 1591. https://doi.org/10.3390/molecules27051591
  4. Anibijuwon, I., Gbala, I., & Abioye, J. (2018). Susceptibility of selected multi-drug resistant clinical isolates to leaves of <i>carpolobia lutea</i>. Ethiopian Journal of Health Sciences, 28(2), 117. https://doi.org/10.4314/ejhs.v28i2.3
  5. Anumihe, OC. (2023). Antimicrobial properties and medicinal effects of andrographis paniculata. International Journal of Agriculture Extension and Social Development, 6(1), 6-1. https://doi.org/10.33545/26180723.2023.v6.i1b.183
  6. Berti, F., Navarini, L., Colomban, S., & Forzato, C. (2020). Hydroxycinnamoyl amino acids conjugates: a chiral pool to distinguish commercially exploited coffea spp.. Molecules, 25(7), 1704. https://doi.org/10.3390/molecules25071704
  7. Boireau, C., Morignat, É., Cazeau, G., Jarrige, N., Jouy, É., Haenni, M., Madec, J. ‐Y., Leblond, A., & Gay, É. (2018). Antimicrobial resistance trends in Escherichia coli isolated from diseased food‐producing animals in France: A 14‐year period time‐series study. Zoonoses and Public Health, 65(1). https://doi.org/10.1111/zph.12412  
  8. Frisilla, D., Pangkahila, W., & Darwinata, A. (2022). The ethanol extract of tangse liberica coffee (coffea liberica) inhibited the reduction of leydig cell number and testosterone levels in male wistar rats (rattus norvegicus) exposed to ultraviolet b light. European Journal of Biomedical Research, 1(5), 1-6. https://doi.org/10.24018/ejbiomed.2022.1.5.24
  9. Li, Z., Wang, X., Miao, J., Xing, L., & Zhang, S. (2021). Antibacterial activity of dodecylamine dialdehyde starch schiff base derivatives. Starch - Stärke, 74(1-2). https://doi.org/10.1002/star.202100178
  10. Mubarak, A., Croft, K. D., Bondonno, C. P., & Din, N. S. (2019). Comparison of liberica and arabica coffee: chlorogenic acid, caffeine, total phenolic and DPPH radical scavenging activity. Asian Journal of Agriculture and Biology , 7(1), 130-136. https://ro.ecu.edu.au/ecuworkspost2013/6495/
  11. Maxiselly, Y. (2023). Relationship analysis based on phytochemical contents among coffee pulp from three coffee species collected in southern thailand and jambi, indonesia. Biodiversitas Journal of Biological Diversity, 24(10). https://doi.org/10.13057/biodiv/d241026
  12. Mueller, M., & Tainter, C. R. (2024). Escherichia coli Infection. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK564298/
  13. Norazlin, A., Muhammad-Adib, A., Wan-Razarinah, W. A. R., Roohinejad, S., Koubaa, M., & Raseetha, S. (2020). Antioxidant and antimicrobial activity of green and roasted coffee beans on human oral pathogens. Food Research, 7(4), 130-138. https://doi.org/10.26656/fr.2017.7(S4).17
  14. Parnomo, T. (2021). Effect of arabica coffee bean extract (coffea arabica) as a growth inhibitor of enterococcus faecalis atcc 29212. Journal of Drug Delivery and Therapeutics, 11(3), 89-96. https://doi.org/10.22270/jddt.v11i3.4820
  15. Poirel, L., Madec, J.-Y., Lupo, A., Schink, A.-K., Kieffer, N., Nordmann, P., & Schwarz, S. (2018). Antimicrobial Resistance in Escherichia coli. Microbiology Spectrum, 6(4), 6.4.14. https://doi.org/10.1128/microbiolspec.ARBA-0026-2017
  16. Rawangkan, A., Siriphap, A., Yosboonruang, A., Kiddee, A., Pook-In, G., Saokaew, S., Sutheinkul, O., & Duangjai, A. (2022). Potential antimicrobial properties of coffee beans and coffee by-products against drug-resistant vibrio cholerae. Frontiers in Nutrition, 9, 865684. https://doi.org/10.3389/fnut.2022.865684
  17. Sant'Anna, V., Biondo, E., Kolchinski, E. M., Da Silva, L. F. S., Corrêa, A. P. F., Bach, E., & Brandelli, A. (2016). Total polyphenols, antioxidant, antimicrobial, and allelopathic activities of spent coffee ground aqueous extract. Waste and Biomass Valorization, 8(2), 439-442. https://doi.org/10.1007/s12649-016-9575-4
  18. Sithanen, N. (2023, March 31). A pocket guide to roasting Liberica coffee. MTPak Coffee.
  19. Sukri, A., Lopes, B. S., & Hanafiah, A. (2021). The emergence of multidrug-resistant helicobacter pylori in southeast asia: a systematic review on the trends and intervention strategies using antimicrobial peptides. Antibiotics, 10(9), 1061. https://doi.org/10.3390/antibiotics10091061
  20. Tan, S.-A., San, T. H., Yee, Y. X., Rosarior, V. L., Agarwal, T., & Son, Y. C. (2020). Antibacterial and antivirulence properties of phenolic-rich drip brewed coffees. Proceedings of the 2020 10th International Conference on Biomedical Engineering and Technology, 46–51. https://doi.org/10.1145/3397391.3397430
  21. Tenover, F. C. (2019). Antimicrobial susceptibility testing. In T. M. Schmidt (Ed.), Encyclopedia of Microbiology (Fourth Edition) (pp. 166–175). Academic Press. https://doi.org/10.1016/B978-0-12-801238-3.02486-7
  22. Tong, S. Y. C., Davis, J., Eichenberger, E., Holland, T., & Fowler, V. (2014). Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 27(3), 603-661. https://doi.org/10.1128/CMR.00134-14
  23. Wahab, M. A. M. A. (2020, July 16). Exploring the potentials of coffee industry in Malaysia. FFTC Agricultural Policy Platform (FFTC-AP). https://ap.fftc.org.tw/article/1005  
  24. Wang, Y., Cao, A., Jiang, Y., Zhang, X., Liu, J., Liu, Y., … & Wang, H. (2014). Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Applied Materials &Amp; Interfaces, 6(4), 2791-2798. https://doi.org/10.1021/am4053317
  25. Yosboonruang, A., Ontawong, A., Thapmamang, J., & Duangjai, A. (2022). Antibacterial activity of Coffea robusta leaf extract against foodborne pathogens. Journal of Microbiology and Biotechnology, 32(8), 1003-1010. https://doi.org/10.4014/jmb.2204.04003